\(\int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx\) [399]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 134 \[ \int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {7 a^3 x}{2}+\frac {7 a^3 \text {arctanh}(\cos (c+d x))}{2 d}-\frac {2 a^3 \cos (c+d x)}{d}+\frac {a^3 \cos ^3(c+d x)}{3 d}-\frac {2 a^3 \cot (c+d x)}{d}-\frac {a^3 \cot ^3(c+d x)}{3 d}-\frac {3 a^3 \cot (c+d x) \csc (c+d x)}{2 d}-\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d} \]

[Out]

-7/2*a^3*x+7/2*a^3*arctanh(cos(d*x+c))/d-2*a^3*cos(d*x+c)/d+1/3*a^3*cos(d*x+c)^3/d-2*a^3*cot(d*x+c)/d-1/3*a^3*
cot(d*x+c)^3/d-3/2*a^3*cot(d*x+c)*csc(d*x+c)/d-3/2*a^3*cos(d*x+c)*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {2788, 3855, 3852, 8, 3853, 2718, 2715, 2713} \[ \int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {7 a^3 \text {arctanh}(\cos (c+d x))}{2 d}+\frac {a^3 \cos ^3(c+d x)}{3 d}-\frac {2 a^3 \cos (c+d x)}{d}-\frac {a^3 \cot ^3(c+d x)}{3 d}-\frac {2 a^3 \cot (c+d x)}{d}-\frac {3 a^3 \sin (c+d x) \cos (c+d x)}{2 d}-\frac {3 a^3 \cot (c+d x) \csc (c+d x)}{2 d}-\frac {7 a^3 x}{2} \]

[In]

Int[Cot[c + d*x]^4*(a + a*Sin[c + d*x])^3,x]

[Out]

(-7*a^3*x)/2 + (7*a^3*ArcTanh[Cos[c + d*x]])/(2*d) - (2*a^3*Cos[c + d*x])/d + (a^3*Cos[c + d*x]^3)/(3*d) - (2*
a^3*Cot[c + d*x])/d - (a^3*Cot[c + d*x]^3)/(3*d) - (3*a^3*Cot[c + d*x]*Csc[c + d*x])/(2*d) - (3*a^3*Cos[c + d*
x]*Sin[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2788

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Dist[a^p, Int[Expan
dIntegrand[Sin[e + f*x]^p*((a + b*Sin[e + f*x])^(m - p/2)/(a - b*Sin[e + f*x])^(p/2)), x], x], x] /; FreeQ[{a,
 b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p/2] && (LtQ[p, 0] || GtQ[m - p/2, 0])

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \left (-5 a^7-5 a^7 \csc (c+d x)+a^7 \csc ^2(c+d x)+3 a^7 \csc ^3(c+d x)+a^7 \csc ^4(c+d x)+a^7 \sin (c+d x)+3 a^7 \sin ^2(c+d x)+a^7 \sin ^3(c+d x)\right ) \, dx}{a^4} \\ & = -5 a^3 x+a^3 \int \csc ^2(c+d x) \, dx+a^3 \int \csc ^4(c+d x) \, dx+a^3 \int \sin (c+d x) \, dx+a^3 \int \sin ^3(c+d x) \, dx+\left (3 a^3\right ) \int \csc ^3(c+d x) \, dx+\left (3 a^3\right ) \int \sin ^2(c+d x) \, dx-\left (5 a^3\right ) \int \csc (c+d x) \, dx \\ & = -5 a^3 x+\frac {5 a^3 \text {arctanh}(\cos (c+d x))}{d}-\frac {a^3 \cos (c+d x)}{d}-\frac {3 a^3 \cot (c+d x) \csc (c+d x)}{2 d}-\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d}+\frac {1}{2} \left (3 a^3\right ) \int 1 \, dx+\frac {1}{2} \left (3 a^3\right ) \int \csc (c+d x) \, dx-\frac {a^3 \text {Subst}(\int 1 \, dx,x,\cot (c+d x))}{d}-\frac {a^3 \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{d}-\frac {a^3 \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,\cot (c+d x)\right )}{d} \\ & = -\frac {7 a^3 x}{2}+\frac {7 a^3 \text {arctanh}(\cos (c+d x))}{2 d}-\frac {2 a^3 \cos (c+d x)}{d}+\frac {a^3 \cos ^3(c+d x)}{3 d}-\frac {2 a^3 \cot (c+d x)}{d}-\frac {a^3 \cot ^3(c+d x)}{3 d}-\frac {3 a^3 \cot (c+d x) \csc (c+d x)}{2 d}-\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 9.93 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.50 \[ \int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {a^3 (1+\sin (c+d x))^3 \left (-84 (c+d x)-42 \cos (c+d x)+2 \cos (3 (c+d x))-20 \cot \left (\frac {1}{2} (c+d x)\right )-9 \csc ^2\left (\frac {1}{2} (c+d x)\right )+84 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-84 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+9 \sec ^2\left (\frac {1}{2} (c+d x)\right )+8 \csc ^3(c+d x) \sin ^4\left (\frac {1}{2} (c+d x)\right )-\frac {1}{2} \csc ^4\left (\frac {1}{2} (c+d x)\right ) \sin (c+d x)-18 \sin (2 (c+d x))+20 \tan \left (\frac {1}{2} (c+d x)\right )\right )}{24 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^6} \]

[In]

Integrate[Cot[c + d*x]^4*(a + a*Sin[c + d*x])^3,x]

[Out]

(a^3*(1 + Sin[c + d*x])^3*(-84*(c + d*x) - 42*Cos[c + d*x] + 2*Cos[3*(c + d*x)] - 20*Cot[(c + d*x)/2] - 9*Csc[
(c + d*x)/2]^2 + 84*Log[Cos[(c + d*x)/2]] - 84*Log[Sin[(c + d*x)/2]] + 9*Sec[(c + d*x)/2]^2 + 8*Csc[c + d*x]^3
*Sin[(c + d*x)/2]^4 - (Csc[(c + d*x)/2]^4*Sin[c + d*x])/2 - 18*Sin[2*(c + d*x)] + 20*Tan[(c + d*x)/2]))/(24*d*
(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^6)

Maple [A] (verified)

Time = 0.40 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.25

method result size
parallelrisch \(\frac {a^{3} \left (\csc ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\sec ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (84 \left (-3 \sin \left (d x +c \right )+\sin \left (3 d x +3 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+84 d x \sin \left (3 d x +3 c \right )-252 d x \sin \left (d x +c \right )+67 \sin \left (3 d x +3 c \right )+24 \sin \left (4 d x +4 c \right )-\sin \left (6 d x +6 c \right )-90 \cos \left (d x +c \right )+67 \cos \left (3 d x +3 c \right )-9 \cos \left (5 d x +5 c \right )-201 \sin \left (d x +c \right )-117 \sin \left (2 d x +2 c \right )\right )}{768 d}\) \(167\)
derivativedivides \(\frac {a^{3} \left (\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{3}+\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+3 a^{3} \left (-\frac {\cos ^{5}\left (d x +c \right )}{\sin \left (d x +c \right )}-\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )-\frac {3 d x}{2}-\frac {3 c}{2}\right )+3 a^{3} \left (-\frac {\cos ^{5}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{2}-\frac {3 \cos \left (d x +c \right )}{2}-\frac {3 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )+a^{3} \left (-\frac {\left (\cot ^{3}\left (d x +c \right )\right )}{3}+\cot \left (d x +c \right )+d x +c \right )}{d}\) \(184\)
default \(\frac {a^{3} \left (\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{3}+\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+3 a^{3} \left (-\frac {\cos ^{5}\left (d x +c \right )}{\sin \left (d x +c \right )}-\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )-\frac {3 d x}{2}-\frac {3 c}{2}\right )+3 a^{3} \left (-\frac {\cos ^{5}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{2}-\frac {3 \cos \left (d x +c \right )}{2}-\frac {3 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )+a^{3} \left (-\frac {\left (\cot ^{3}\left (d x +c \right )\right )}{3}+\cot \left (d x +c \right )+d x +c \right )}{d}\) \(184\)
risch \(-\frac {7 a^{3} x}{2}+\frac {3 i a^{3} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}-\frac {7 a^{3} {\mathrm e}^{i \left (d x +c \right )}}{8 d}-\frac {7 a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{8 d}-\frac {3 i a^{3} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}+\frac {a^{3} \left (-6 i {\mathrm e}^{4 i \left (d x +c \right )}+9 \,{\mathrm e}^{5 i \left (d x +c \right )}+24 i {\mathrm e}^{2 i \left (d x +c \right )}-10 i-9 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{3}}-\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 d}+\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 d}+\frac {a^{3} \cos \left (3 d x +3 c \right )}{12 d}\) \(205\)
norman \(\frac {\frac {a^{3} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a^{3}}{24 d}-\frac {3 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d}-\frac {a^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {39 a^{3} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {39 a^{3} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {3 a^{3} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {a^{3} \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}-\frac {7 a^{3} x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {21 a^{3} x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {21 a^{3} x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {7 a^{3} x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {37 a^{3} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}-\frac {67 a^{3} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}-\frac {97 a^{3} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {7 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}\) \(311\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)^4*(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/768*a^3*csc(1/2*d*x+1/2*c)^3*sec(1/2*d*x+1/2*c)^3*(84*(-3*sin(d*x+c)+sin(3*d*x+3*c))*ln(tan(1/2*d*x+1/2*c))+
84*d*x*sin(3*d*x+3*c)-252*d*x*sin(d*x+c)+67*sin(3*d*x+3*c)+24*sin(4*d*x+4*c)-sin(6*d*x+6*c)-90*cos(d*x+c)+67*c
os(3*d*x+3*c)-9*cos(5*d*x+5*c)-201*sin(d*x+c)-117*sin(2*d*x+2*c))/d

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.54 \[ \int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {18 \, a^{3} \cos \left (d x + c\right )^{5} - 56 \, a^{3} \cos \left (d x + c\right )^{3} + 42 \, a^{3} \cos \left (d x + c\right ) + 21 \, {\left (a^{3} \cos \left (d x + c\right )^{2} - a^{3}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 21 \, {\left (a^{3} \cos \left (d x + c\right )^{2} - a^{3}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 2 \, {\left (2 \, a^{3} \cos \left (d x + c\right )^{5} - 21 \, a^{3} d x \cos \left (d x + c\right )^{2} - 14 \, a^{3} \cos \left (d x + c\right )^{3} + 21 \, a^{3} d x + 21 \, a^{3} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{12 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/12*(18*a^3*cos(d*x + c)^5 - 56*a^3*cos(d*x + c)^3 + 42*a^3*cos(d*x + c) + 21*(a^3*cos(d*x + c)^2 - a^3)*log(
1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 21*(a^3*cos(d*x + c)^2 - a^3)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c)
 + 2*(2*a^3*cos(d*x + c)^5 - 21*a^3*d*x*cos(d*x + c)^2 - 14*a^3*cos(d*x + c)^3 + 21*a^3*d*x + 21*a^3*cos(d*x +
 c))*sin(d*x + c))/((d*cos(d*x + c)^2 - d)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**4*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.38 \[ \int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {2 \, {\left (2 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right ) - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a^{3} - 18 \, {\left (3 \, d x + 3 \, c + \frac {3 \, \tan \left (d x + c\right )^{2} + 2}{\tan \left (d x + c\right )^{3} + \tan \left (d x + c\right )}\right )} a^{3} + 4 \, {\left (3 \, d x + 3 \, c + \frac {3 \, \tan \left (d x + c\right )^{2} - 1}{\tan \left (d x + c\right )^{3}}\right )} a^{3} + 9 \, a^{3} {\left (\frac {2 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} - 4 \, \cos \left (d x + c\right ) + 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) - 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{12 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/12*(2*(2*cos(d*x + c)^3 + 6*cos(d*x + c) - 3*log(cos(d*x + c) + 1) + 3*log(cos(d*x + c) - 1))*a^3 - 18*(3*d*
x + 3*c + (3*tan(d*x + c)^2 + 2)/(tan(d*x + c)^3 + tan(d*x + c)))*a^3 + 4*(3*d*x + 3*c + (3*tan(d*x + c)^2 - 1
)/tan(d*x + c)^3)*a^3 + 9*a^3*(2*cos(d*x + c)/(cos(d*x + c)^2 - 1) - 4*cos(d*x + c) + 3*log(cos(d*x + c) + 1)
- 3*log(cos(d*x + c) - 1)))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 250 vs. \(2 (122) = 244\).

Time = 0.41 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.87 \[ \int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 27 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 252 \, {\left (d x + c\right )} a^{3} - 252 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 63 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {154 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 153 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} + 291 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 192 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 195 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 414 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 167 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 72 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 27 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a^{3}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}^{3}}}{72 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/72*(3*a^3*tan(1/2*d*x + 1/2*c)^3 + 27*a^3*tan(1/2*d*x + 1/2*c)^2 - 252*(d*x + c)*a^3 - 252*a^3*log(abs(tan(1
/2*d*x + 1/2*c))) + 63*a^3*tan(1/2*d*x + 1/2*c) + (154*a^3*tan(1/2*d*x + 1/2*c)^9 + 153*a^3*tan(1/2*d*x + 1/2*
c)^8 + 291*a^3*tan(1/2*d*x + 1/2*c)^7 - 192*a^3*tan(1/2*d*x + 1/2*c)^6 - 195*a^3*tan(1/2*d*x + 1/2*c)^5 - 414*
a^3*tan(1/2*d*x + 1/2*c)^4 - 167*a^3*tan(1/2*d*x + 1/2*c)^3 - 72*a^3*tan(1/2*d*x + 1/2*c)^2 - 27*a^3*tan(1/2*d
*x + 1/2*c) - 3*a^3)/(tan(1/2*d*x + 1/2*c)^3 + tan(1/2*d*x + 1/2*c))^3)/d

Mupad [B] (verification not implemented)

Time = 9.60 (sec) , antiderivative size = 339, normalized size of antiderivative = 2.53 \[ \int \cot ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {3\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}+\frac {a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,d}-\frac {7\,a^3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{2\,d}-\frac {7\,a^3\,\mathrm {atan}\left (\frac {49\,a^6}{49\,a^6-49\,a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {49\,a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{49\,a^6-49\,a^6\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {7\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,d}-\frac {-17\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+19\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\frac {64\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{3}+73\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+46\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\frac {107\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+8\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+3\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {a^3}{3}}{d\,\left (8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+24\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+24\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\right )} \]

[In]

int((cos(c + d*x)^4*(a + a*sin(c + d*x))^3)/sin(c + d*x)^4,x)

[Out]

(3*a^3*tan(c/2 + (d*x)/2)^2)/(8*d) + (a^3*tan(c/2 + (d*x)/2)^3)/(24*d) - (7*a^3*log(tan(c/2 + (d*x)/2)))/(2*d)
 - (7*a^3*atan((49*a^6)/(49*a^6 - 49*a^6*tan(c/2 + (d*x)/2)) + (49*a^6*tan(c/2 + (d*x)/2))/(49*a^6 - 49*a^6*ta
n(c/2 + (d*x)/2))))/d + (7*a^3*tan(c/2 + (d*x)/2))/(8*d) - (8*a^3*tan(c/2 + (d*x)/2)^2 + (107*a^3*tan(c/2 + (d
*x)/2)^3)/3 + 46*a^3*tan(c/2 + (d*x)/2)^4 + 73*a^3*tan(c/2 + (d*x)/2)^5 + (64*a^3*tan(c/2 + (d*x)/2)^6)/3 + 19
*a^3*tan(c/2 + (d*x)/2)^7 - 17*a^3*tan(c/2 + (d*x)/2)^8 + a^3/3 + 3*a^3*tan(c/2 + (d*x)/2))/(d*(8*tan(c/2 + (d
*x)/2)^3 + 24*tan(c/2 + (d*x)/2)^5 + 24*tan(c/2 + (d*x)/2)^7 + 8*tan(c/2 + (d*x)/2)^9))